References

Publications related to LifeV

[1] Erik Burman, Miguel Angel Fernandez, and Peter Hansbo. Continuous interior penalty finite element method for Oseen's equations. SIAM Journal on Numerical Analysis, 44(3):1248-1274, 2006. [ bib ]
[2] Antonio F Corno, Martin Prosi, Pierre Fridez, Paolo Zunino, Alfio Quarteroni, and Ludwig K von Segesser. The non-circular shape of FloWatch-PAB prevents the need for pulmonary artery reconstruction after banding. Computational fluid dynamics and clinical correlations. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery, 29:93-9, 2006. [ bib ]
[3] Paolo Crosetto. Fluid-Structure Interaction Problems in Hemodynamics: Formulation, Solver, Preconditioners and Applications. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, July 2011. [ bib | http ]
[4] Paolo Crosetto, Simone Deparis, Gilles Fourestey, and Alfio Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. on Scientific Computing, 33(4):1598-1622, 2011. [ bib | DOI | http ]
[5] Paolo Crosetto, Philippe Reymond, Simone Deparis, Dimitrios Kontaxakis, Nikolaos Stergiopulos, and Alfio Quarteroni. Fluid-structure interaction simulation of aortic blood flow. Computers & Fluids, 43(1):46-57, 2011. Symposium on High Accuracy Flow Simulations. Special Issue Dedicated to Prof. Michel Deville. [ bib | DOI | http ]
[6] M. de Luca. Mathematical and numerical models for cerebral aneurysm wall mechanics. PhD thesis, Politecnico di Milano, 2009. [ bib ]
[7] Marta D'Elia, Mauro Perego, and Alessandro Veneziani. A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics. Journal of Scientific Computing, 52(2):340-359, November 2012. [ bib ]
[8] Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quarteroni. Fluid-structure algorithms based on steklov-poincaré operators. Comput. Methods Appl. Mech. Engrg., 195(41-43):5797-5812, 2006. [ bib ]
[9] Daniele Antonio Di Pietro and Alessandro Veneziani. Expression templates implementation of continuous and discontinuous Galerkin methods. Computing and Visualization in Science, 12(8):421-436, September 2009. [ bib ]
[10] M. A. Fernandez and M. Moubachir. A Newton method using exact jacobians for solving fluid-structure coupling. Computers and Structures, 83(2-3):127-142, 2005. [ bib ]
[11] L. Formaggia, M. Fernandez, A. Gauthier, J.F. Gerbeau, C. Prud'homme, and Alessandro Veneziani. The LifeV Project. Web, 2002-2004. [ bib | http ]
[12] L. Formaggia, J.F. Gerbeau, and C. Prud'homme. LifeV Developer Manual. The LifeV Project. [ bib | .pdf ]
[13] Luca Formaggia, Alexandra Moura, and Fabio Nobile. On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. RAIRO-M2AN Modelisation Math et Analyse Numerique-Mathem Modell Numerical Analysis, 41(4):743-769, 2007. [ bib ]
[14] Luca Formaggia, Alessandro Veneziani, and Christian Vergara. A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM Journal on Numerical Analysis, 46(6):2769-2794, 2008. [ bib ]
[15] Alessio Fumagalli and Anna Scotti. Numerical modelling of multiphase subsurface flow in the presence of fractures. Communications in Applied and Industrial Mathematics, 2011. [ bib | DOI | http ]
[16] Alain Gauthier, Fausto Saleri, and Alessandro Veneziani. A fast preconditioner for the incompressible Navier Stokes Equations. Comput. Vis. Sci., 6(2-3):105-112, 2004. [ bib ]
[17] L Gerardo-Giorda, L Mirabella, F Nobile, M Perego, and Alessandro Veneziani. A model-based block-triangular preconditioner for the bidomain system in electrocardiology. Journal Of Computational Physics, 228(10):3625-3639, 2009. [ bib ]
[18] A. C. I. Malossi, P. J. Blanco, P. Crosetto, S. Deparis, and A. Quarteroni. Implicit coupling of one-dimensional and three-dimensional blood-flow models with compliant vessels. Submitted, 2012. [ bib ]
[19] A. C. I. Malossi, P. J. Blanco, and S. Deparis. A two-level time step technique for the partitioned solution of one-dimensional arterial networks. Submitted, 2011. [ bib ]
[20] A. C. I. Malossi, P. J. Blanco, S. Deparis, and A. Quarteroni. Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows. Int. J. Num. Meth. Biomed. Engng., 27(12):2035-2057, 2011. [ bib ]
[21] A. C. I. Malossi and J. Bonnemain. Numerical comparison of geometrical multiscale models for the simulation of arterial flows. In preparation, 2012. [ bib ]
[22] A.C.I. Malossi and S. Deparis. LifeV Development Guidelines. The LifeV Project. [ bib | .pdf ]
[23] E. Marchandise, P. Crosetto, C. Geuzaine, J.-F. Remacle, and E. Sauvage. Quality open source mesh generation for cardiovascular flow simulations. In D. Ambrosi, A. Quarteroni, and G. Rozza, editors, Modelling Physiological Flow, Springer Series on Modeling, Simulation and Applications. Springer-Verlag, 2011. submitted. [ bib ]
[24] Vincent Martin, Francois Clement, Astrid Decoene, and Jean-Frédéric Gerbeau. Parameter identification for a one-dimensional blood flow model. ESAIM: Proceedings, 14:174-200, 2005. [ bib ]
[25] Lucia Mirabella, Christopher M Haggerty, Tiziano Passerini, Marina Piccinelli, Andrew J Powell, Pedro J Del Nido, Alessandro Veneziani, and Ajit P Yoganathan. Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions. International Journal For Numerical Methods In Biomedical Engineering, pages Published online, DOI: 10.1002/cnm.2517, September 2012. [ bib ]
[26] F. Nobile, A. Quarteroni, and R. Ruiz-Baier. An active strain electromechanical model for cardiac tissue. to appear in Int. J. Num. Meth. Biomed. Engng., 2011. [ bib | DOI | http ]
[27] Fabio Nobile, Matteo Pozzoli, and Christian Vergara. Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics. Submitted, 2011. [ bib | .pdf ]
[28] Tiziano Passerini, Mariarita de Luca, Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani. A 3D/1D geometrical multiscale model of cerebral vasculature. Journal of Engineering Mathematics, 64(4):319-330, 2009. [ bib ]
[29] Tiziano Passerini, Laura M Sangalli, Simone Vantini, Marina Piccinelli, Susanna Bacigaluppi, Luca Antiga, Edoardo Boccardi, Piercesare Secchi, and Alessandro Veneziani. An Integrated Statistical Investigation of Internal Carotid Arteries of Patients Affected by Cerebral Aneurysms. Cardiovascular Engineering and Technology, 3(1):26-40, 2012. [ bib ]
[30] Mauro Perego and Alessandro Veneziani. An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. Electronic Transactions on Numerical Analysis, 35:234-256, 2009. [ bib ]
[31] Mauro Perego, Alessandro Veneziani, and Christian Vergara. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM Journal on Scientific Computing, 33(3):1181-1211, 2011. [ bib ]
[32] Raffaele Ponzini, Christian Vergara, Alberto Redaelli, and Alessandro Veneziani. Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound in medicine & biology, 32(10):1545-1555, October 2006. [ bib ]
[33] Philippe Reymond, Paolo Crosetto, Simone Deparis, Alfio Quarteroni, and Nikos Stergiopulos. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Medical Engineering and Physics, September 2012. [ bib ]
[34] S. Rossi, R. Ruiz-Baier, L.F. Pavarino, and A. Quarteroni. Active strain and activation models in cardiac electromechanics. to appear in Proc. Appl. Math. Mech., 2011. [ bib ]
[35] Jaroslaw Slawinski, Tiziano Passerini, Umberto Villa, Alessandro Veneziani, and Vaidy Sunderam. Experiences with target-Platform Heterogeneity in Clouds, Grids, and On Premise Resources. In 2012 26th IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 41-52. IEEE, 2012. [ bib ]
[36] A. Veneziani and U. Villa. ALADINS: an ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations. Journal of Computational Physics, to appear. [ bib ]
[37] C Vergara and P Zunino. Multiscale boundary conditions for drug release from cardiovascular stents. Multiscale Modeling & Simulation, pages 565-588, 2008. [ bib ]

This file was generated by bibtex2html 1.97.





















Bibliography

[1] Santiago Badia, Fabio Nobile, and Christian Vergara. Fluid-structure partitioned procedures based on robin transmission conditions. J. Comput. Phys., 227(14):7027-7051, 2008. [ bib ]
[2] P.J. Blanco, R.A. Feijóo, and S.A. Urquiza. A unified variational approach for coupling 3d-1d models and its blood flow applications. Comp. Meth. Appl. Mech. Engrg., 196(41-44):4391-4410, 2007. [ bib ]
[3] P.J. Blanco, J.S. Leiva, R.A. Feijóo, and G.C. Buscaglia. Black-box decomposition approach for computational hemodynamics: One-dimensional models. Comp. Meth. Appl. Mech. Engrg., 200(13-16):1389-1405, 2011. [ bib ]
[4] R. Di Cosmo, P. Weis, Zheng Li, F. Clément, V. Martin, and A. Vodicka. Parallel programming with the ocamlp3l system with application to coupling numerical codes. Research Report 5131, Inria, Rocquencourt, France, 2003. [ bib | .html ]
[5] M.A. Fernández and M. Moubachir. A newton method using exact jacobian for solving fluid-structure coupling. Computers & Structures, 83(2-3):127-142, 2005. [ bib ]
[6] L. Formaggia, D. Lamponi, and A. Quarteroni. One-dimensional models for blood flow in arteries. J. Eng. Math., 47(3-4):251-276, 2003. [ bib ]
[7] A. Gauthier, F. Saleri, and A. Veneziani. A fast preconditioner for the incompressible Navier-Stokes equations. Computing and Visualization in Science (CVS), 2003. To appear. [ bib | .ps.gz ]
[8] J.F. Gerbeau and M. Vidrascu. A quasi-newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. M2AN, 37(4):663-680, 2003. [ bib ]
[9] V. Martin. Multidomain Simulations of Flow in Porous Media. PhD thesis, Université Paris IX Dauphine, March 2004. Partly in French. [ bib | .ps.gz ]
[10] Buhmann M.D. Radial basis functions: theory and implementations. Cambridge University Press, 2004. [ bib ]
[11] F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sc Comp, 30(2):731-763, 2008. [ bib ]
[12] R. Ponzini, C. Vergara, A. Redaelli, and A. Veneziani. Reliable cfd-based estimation of flow rate in haemodynamics measures. Ultrasound in Medicine & Biology, 32(10):1545-55, 2006. [ bib ]
[13] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York, 1992. [ bib ]
[14] Bjarne Stroustrup. The C++ Programming Language, Special Edition. Addison-Wesley Verlag, Boston, 2000. [ bib ]
[15] Christian Vergara and Paolo Zunino. Multiscale modeling and simulation of drug release from cardiovascular stents. SIAM Multiscale Modeling and Simulation, 7(2):565-588, 2008. [ bib ]
[16] F. Viscardi, C. Vergara, L. Antiga, S. Merelli, A. Veneziani, G. Puppini, G. Faggian, A. Mazzucco, and G.B Luciani. Comparative finite-element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artificial Organs, 34(12), 2010. [ bib ]
[17] P. Zunino, C. D'Angelo, L. Petrini, C. Vergara, C. Capelli, and F Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comp. Meth. Appl. Mech. Eng, 198(45-46):3633-3644, 2009. [ bib ]

This file was generated by bibtex2html 1.97.

Comments